Introduction to probabilistic piping

In this notebook, a barebones example is given on how to create a piping fragility curve using an Excel file as input for the ProbPipingFixedWaterlevel class.

from pathlib import Path

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from probabilistic_piping import ProbInput, ProbPipingFixedWaterlevel

Creating input data

Probabilistic calculations expect an instance of ProbInput. A practical way of making this ProbInput instance is from a specially crafted Excel sheet.

data_path = Path("../../../test/data/full_test.xlsx")
df_input = pd.read_excel(data_path, sheet_name="input", index_col=0, header=0)
df_input.head(3)
Beschrijving Waarde Kansverdeling Verschuiving Mean Spreiding Spreidingstype Afknot_links Afknot_rechts Min Step Max StDev
Naam
D D -- Dikte pipinggevoelige zandlaag (aquifer) [m] 4.44234 Lognormaal 0.0 9.000000 0.50 Standaardafwijking NaN NaN NaN NaN NaN 0.500000
D_cover D_cover -- Dikte (cohesieve) deklaag in [m] 3.12096 Lognormaal 0.0 4.000000 0.50 Standaardafwijking NaN NaN NaN NaN NaN 0.500000
d_70 d_70 -- 70% kwantiel korrelgrootte van pipingg... 0.0 Lognormaal 0.0 0.000161 0.12 Variatiecoëfficiënt NaN NaN NaN NaN NaN 0.000019

The Excel data is converted to a ProbInput instance using the classmethod from_dataframe(). The ProbInput class has a number of attributes: params, stochasts, charvals, calc_options and hlist.

Depending on the type of calculation, not all options need to be set.

inp_data = ProbInput.from_dataframe(df_input)

params are deterministic (fixed) variables

inp_data.params
{'d_70m': 0.000208,
 'g': 9.81,
 'gamma_water': 10,
 'r_c': 0.3,
 'v': 1.33e-06,
 'gamma_sp': 16.19,
 't_norm': 300}

stochasts are stochastic variables

inp_data.stochasts
{'D': class=LogNormal name=LogNormal dimension=1 muLog=2.19568 sigmaLog=0.0555128 gamma=0,
 'D_cover': class=LogNormal name=LogNormal dimension=1 muLog=1.37854 sigmaLog=0.124516 gamma=0,
 'd_70': class=LogNormal name=LogNormal dimension=1 muLog=-8.74125 sigmaLog=0.119571 gamma=0,
 'eta': class=LogNormal name=LogNormal dimension=1 muLog=-1.30934 sigmaLog=0.00370369 gamma=0,
 'gamma_sat': class=LogNormal name=LogNormal dimension=1 muLog=1.93859 sigmaLog=0.120984 gamma=10,
 'h_exit': class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[-1.5] sigma=class=Point name=Unnamed dimension=1 values=[0.1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],
 'i_ch': class=LogNormal name=LogNormal dimension=1 muLog=-0.712758 sigmaLog=0.198042 gamma=0,
 'k': class=LogNormal name=LogNormal dimension=1 muLog=-9.05833 sigmaLog=0.246221 gamma=0,
 'L': class=LogNormal name=LogNormal dimension=1 muLog=4.75131 sigmaLog=0.0332908 gamma=0,
 'm_p': class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[1] sigma=class=Point name=Unnamed dimension=1 values=[0.08] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],
 'm_u': class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[1] sigma=class=Point name=Unnamed dimension=1 values=[0.1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],
 'r_exit': class=LogNormal name=LogNormal dimension=1 muLog=-0.228119 sigmaLog=0.0997513 gamma=0,
 'theta': class=LogNormal name=LogNormal dimension=1 muLog=3.61092 sigmaLog=0.00027027 gamma=0}

charvals are characteristic values of the stochastic variables

inp_data.charvals
{'D': 4.44234,
 'D_cover': 3.12096,
 'd_70': 1.88016e-07,
 'eta': 0.282277,
 'gamma_sat': 13.4991,
 'h_exit': 0.0996889,
 'i_ch': 0.22333,
 'k': 4.75458e-09,
 'L': 88.0597,
 'm_p': 0.996009,
 'm_u': 0.994455,
 'r_exit': 0.793916,
 'theta': 42.8826,
 'h': 5.0}

calc_options are options to be used in specific probabilistic methods

inp_data.calc_options
{'Rekentechniek': 'FORM AbdoRackwitz',
 'FORM start': 'mean',
 'MaximumAbsoluteError': 0.01,
 'MaximumRelativeError': 0.01,
 'MaximumResidualError': 1e-05,
 'MaximumConstraintError': 0.01,
 'MaximumIterationNumber': 100,
 'MaximumEvaluationNumber': 1000000000,
 'MaximumCoefficientOfVariation': 0.1,
 'BlockSize': 1000,
 'MaximumOuterSampling': 1000}

hlist is a range of water levels

np.array(inp_data.hlist)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ,
        1.1,  1.2,  1.3,  1.4,  1.5,  1.6,  1.7,  1.8,  1.9,  2. ,  2.1,
        2.2,  2.3,  2.4,  2.5,  2.6,  2.7,  2.8,  2.9,  3. ,  3.1,  3.2,
        3.3,  3.4,  3.5,  3.6,  3.7,  3.8,  3.9,  4. ,  4.1,  4.2,  4.3,
        4.4,  4.5,  4.6,  4.7,  4.8,  4.9,  5. ,  5.1,  5.2,  5.3,  5.4,
        5.5,  5.6,  5.7,  5.8,  5.9,  6. ,  6.1,  6.2,  6.3,  6.4,  6.5,
        6.6,  6.7,  6.8,  6.9,  7. ,  7.1,  7.2,  7.3,  7.4,  7.5,  7.6,
        7.7,  7.8,  7.9,  8. ,  8.1,  8.2,  8.3,  8.4,  8.5,  8.6,  8.7,
        8.8,  8.9,  9. ,  9.1,  9.2,  9.3,  9.4,  9.5,  9.6,  9.7,  9.8,
        9.9, 10. , 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9,
       11. , 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. ,
       12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13. , 13.1,
       13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14. , 14.1, 14.2,
       14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 15. , 15.1, 15.2, 15.3,
       15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 16. , 16.1, 16.2, 16.3, 16.4,
       16.5, 16.6, 16.7, 16.8, 16.9, 17. , 17.1, 17.2, 17.3, 17.4, 17.5,
       17.6, 17.7, 17.8, 17.9, 18. , 18.1, 18.2, 18.3, 18.4, 18.5, 18.6,
       18.7, 18.8, 18.9, 19. , 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7,
       19.8, 19.9, 20. ])

Running a fragility curve calculation

From this input data, we can now create a probabilistic piping calculation for a fixed water level. Fragility curves can be created for the submechanisms of heave, uplift, sellmeijer or the combination of the former as the mechanism combi.

In this example, a fragility curve is calculated for the combined mechanism. Furthermore, all stochasts are assumed to be independent (copula=None).

prob = ProbPipingFixedWaterlevel(progress=False)
_, pc = prob.fixed_waterlevel_fragilitycurve(inp_data, z_type="combi", copula=None)

The results variable contains a list of ProbResult instances. A ProbResult is created for each water level, as each water level is a separate probabilistic calculation. A ProbResult instance contains detailed information of such probabilistic calculation.

pc.results[-1]
ProbResult(h=20.0, prob_cond=1.0, converged=True, z_val=-0.008833492209245453, physical_design={'D': 8.986143178848712, 'D_cover': 6.582844953831219, 'd_70': 0.00015985317099639446, 'eta': 0.2699981481671999, 'gamma_sat': 16.948956640465564, 'h_exit': -1.484810143498153, 'i_ch': 1.8689020278023638, 'k': 0.00011641710001743983, 'L': 115.7358486166931, 'm_p': 1.0, 'm_u': 1.0, 'r_exit': 0.5753293471052043, 'theta': 36.99999864864872}, standard_design={'D': 0.0, 'D_cover': 4.063136676688446, 'd_70': 0.0, 'eta': 0.0, 'gamma_sat': 0.0, 'h_exit': 0.15189856501846832, 'i_ch': 6.756684392079229, 'k': 0.0, 'L': 0.0, 'm_p': 0.0, 'm_u': 0.0, 'r_exit': -3.2550328765482837, 'theta': 0.0}, importancefactors={'D': -0.0, 'D_cover': -0.4762718147944334, 'd_70': -0.0, 'eta': -0.0, 'gamma_sat': -0.0, 'h_exit': -0.017805210846359977, 'i_ch': -0.792003467634163, 'k': -0.0, 'L': -0.0, 'm_p': -0.0, 'm_u': -0.0, 'r_exit': 0.3815476905376247, 'theta': -0.0}, functionevals=45, mechanism='combi')

Visualizing the calculated fragility curve

Using the result object, the fragility curve can be visualized using the water levels and the conditional probabilities.

fig, ax = plt.subplots()
ax.plot([r.h for r in pc.results], [r.prob_cond for r in pc.results])
ax.set_xlabel("Water level [m]")
ax.set_ylabel("Failure probability");